RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. SECOND SEMESTER EXAMINATION, MAY 2017 FIRST YEAR [BATCH 2016-19] MATHEMATICS (General) Paper : II

Full Marks: 75

[Use a separate Answer Book for each group]

Group - A

Answer any three questions from Question Nos. 1 to 5 :

: 22/05/2017

: 11 am – 2 pm

Date

Time

- 1. If by a rotation of rectangular axes about the origin, (ax+by) and (cx+dy) be changed to (a'x'+b'y') and (c'x'+d'y') respectively, show that ad-bc = a'd'-b'c'. 5 2. a) Find the equation of the bisectors of the angle between the lines $x^2 - 4xy - y^2 = 0$. 3 b) Find the angle between the pair of straight lines $y^2 + xy - 2x^2 - 5x - y - 2 = 0$. 2 Discuss the nature of the conic represented by $9x^2 - 24xy + 16y^2 - 18x - 101y + 19 = 0$ and 3. reduce it to the Canonical form. 5 Two tangents drawn to the parabola $y^2 = 4ax$ meet at an angle 45°. Show that the locus of their 4. point of intersection is $(x+a)^2 = y^2 - 4ax$. 5 Show that for the conic $\frac{l}{r} = 1 + e \cos \theta$, the equation to the directrix corresponding to the focus 5. other than the pole is $\frac{l}{r} = -\frac{1-e^2}{1+e^2}e\cos\theta$. Answer any three questions from Question Nos. 6 to 10: [3×5]
- In any triangle ABC, with usual notations, prove that $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$. 6. 5
- Find the moment about the point $(\hat{i}+2\hat{j}-\hat{k})$ of a force represented by $(3\hat{i}+\hat{k})$ acting through 7. the point $(2\hat{i} - \hat{j} + 3\hat{k})$.
- 8. a) In a triangle ABC on a plane, let $\overrightarrow{BC} = \vec{a}, \overrightarrow{CA} = \vec{b}$ and $\overrightarrow{AB} = \vec{c}$. Prove, by vectors, that $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$ where a, b, c are lengths of the sides $\overline{BC}, \overline{CA}, \overline{AB}$ respectively.
 - b) Show that perpendiculars from the vertices of a triangle to the opposite sides are concurrent.
- Given two vectors $\vec{\alpha} = 3\hat{i} \hat{j}$ & $\vec{\beta} = 2\hat{i} + \hat{j} 3\hat{k}$, express $\vec{\beta}$ in the form $\vec{\beta}_1 + \vec{\beta}_2$, where $\vec{\beta}_1 \parallel \vec{\alpha}$ 9. and $\vec{\beta}_2 \perp \vec{\alpha}$.

5

5

2

3

5

10. Show that
$$\begin{bmatrix} \vec{b} \times \vec{c}, \vec{c} \times \vec{a}, \vec{a} \times \vec{b} \end{bmatrix} = \begin{bmatrix} \vec{a} \vec{b} \vec{c} \end{bmatrix}^2$$
. 5

Group - B

Answer **any five** questions from **Question Nos. 11 to 18** :

11. If
$$\lim_{x \to 0} \frac{\sin 2x + a \sin x}{x^3}$$
 be finite, find the value of *a* and the limit. 2+3

- 12. Find the asymptotes of the curve $x^2y x^2 y^3 = 0$.
- 13. Find the envelope of the family of curves, with parameter α , given by $(x-\alpha)^2 + (y-\alpha)^2 = 2\alpha$.
- 14. Find the greatest and the least values of the function $f:[0,4] \rightarrow \mathbb{R}$ defined by $f(x) = 2x^3 15x^2 + 36x + 1.$ 5
- 15. Prove that every convergent sequence is bounded, but the converse is not necessarily true. Explain with example.
- 16. Test the following two series for convergence:

(a)
$$\frac{1}{2} + \frac{2}{2^2} + \frac{3}{2^3} + \dots + \frac{n}{2^n} + \dots$$

(b) $\frac{1}{3} + \left(\frac{2}{5}\right)^2 + \left(\frac{3}{7}\right)^3 + \dots + \left(\frac{n}{2n+1}\right)^n + \dots$ $2\frac{1}{2} + 2\frac{1}{2}$

- 17. Determine the following function f(x) satisfying the conditions of Rolle's theorem in the given interval and when the required conditions are fulfilled, exhibit at least one value of x in the interval at which f'(x) = 0, $f(x) = \sin x \cos x$, $0 \le x \le \frac{\pi}{2}$.
- 18. Decompose the number 36 into two factors such that the sum of their square is the least possible.

Answer any two questions from Question Nos. 19 to 21 :

19. a) Evaluate
$$\int \frac{dx}{5-3\cos x}$$
.

b) Prove that
$$\int_{0}^{0} f(x) dx = \int_{0}^{0} f(a-x) dx$$
. 2

20. a) Find
$$\lim_{n \to \infty} \left\{ \left(1 + \frac{1}{n}\right) \left(1 + \frac{2}{n}\right) \left(1 + \frac{3}{n}\right) \cdots \left(1 + \frac{n}{n}\right) \right\}^{\frac{1}{n}}.$$

b) Find the value of
$$\int_{-1}^{1} |x| dx$$
.

[2×5]

5

5

[5×5]

5

5

21. If
$$J_n = \int_0^{\frac{\pi}{4}} \tan^n x \, dx$$
 where *n* is a positive integer, show that $J_n = \frac{1}{n-1} - J_{n-2}$. Use this result to
evaluate $\int_0^{\frac{\pi}{4}} \tan^6 x \, dx$.
3+2

Answer any two questions from Question Nos. 22 to 24 :

22. a) Solve:
$$x \, dx + y \, dy + \frac{x \, dy - y \, dx}{x^2 + y^2} = 0.$$
 3

b) State the order and the degree of the differential equation $\left\{1 + \left(\frac{dy}{dx}\right)^2\right\}^{\frac{3}{2}} = K \frac{d^2 y}{dx^2}$. 2

23. Solve:
$$\frac{dy}{dx} + \frac{y}{x}\log y = \frac{y}{x^2} (\log y)^2.$$

Obtain the general and singular solutions of $y = px + \sqrt{1 + p^2}$ where $p = \frac{dy}{dx}$. 24. 3+2

_____×____

[2×5]